# ADE20K Adaptation
Upernet Swin Tiny
MIT
UPerNet is a semantic segmentation model based on the ConvNeXt-Tiny architecture, suitable for image segmentation tasks.
Image Segmentation
Safetensors
U
smp-hub
191
0
Upernet Convnext Base
MIT
UPerNet image segmentation model based on ConvNeXt architecture, suitable for semantic segmentation tasks
Image Segmentation
Safetensors
U
smp-hub
57
0
Dpt Large Ade20k
MIT
A Transformer-based semantic segmentation model optimized for the ADE20K dataset
Image Segmentation
Safetensors
D
smp-hub
279
0
Mit B4
Other
SegFormer encoder fine-tuned on ImageNet-1k, featuring a hierarchical Transformer architecture for semantic segmentation tasks
Image Segmentation
Transformers

M
nvidia
3,573
1
Mit B2
Other
SegFormer is a Transformer-based semantic segmentation model whose encoder has been fine-tuned on Imagenet-1k.
Image Segmentation
Transformers

M
nvidia
13.86k
4
Mit B0
Other
SegFormer is a Transformer-based semantic segmentation model featuring a hierarchical encoder and lightweight MLP decoder design, excelling in benchmarks like ADE20K and Cityscapes.
Image Segmentation
Transformers

M
nvidia
83.99k
35
Mit B1
Other
SegFormer is a semantic segmentation model based on Transformer architecture, featuring a hierarchical encoder and lightweight MLP decoder design.
Image Segmentation
Transformers

M
nvidia
7,305
1
Featured Recommended AI Models